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We study the dynamics of diffusing particles in one space dimension with annihilation on collision
and nucleatior{creation of particleswith constant probability per unit time and length. The cases

of nucleation of single particles and nucleation in pairs are considered. A new method of analysis
permits exact calculation of the steady-state density and its time evolution in terms of the three
parameters describing the microscopic dynamics: the nucleation rate, the initial separation of
nucleated pairs, and the diffusivity of a particle. For paired nucleation at sufficiently small initial
separation the nucleation rate is proportional to the square of the steady-state density. For unpaired
nucleation, and for paired nucleation at sufficiently large initial separation, the nucleation rate is
proportional to the cube of the steady-state density.2@1 American Institute of Physics.

[DOI: 10.1063/1.1372763

I. INTRODUCTION A portion of a typical realization of these dynamics is
shown in Fig. 1. For unpaired nucleatioin and (ii) are re-

Reaction rates controlled by collisions between diffusingplaced by

particles depend on the distribution of distances between par- (i") Particles are nucleated at random times and positions

ticles as well as on the density of particles. In particular, asyith rate Q.

Noyes stated in 1961, Any rigorous treatment of chemical - )

kinetics in solution must consider concentration gradients AN existing method of analysis, based on a truncated

that are established by the existence of the reaction itskif hierarchy of correlation functions, is developed and extended

Here, we study the dynamics of point particles in one dimenin this article to the case of paired nucleation, yielding ex-

sion, nucleated at random positions and times, then diffusingreSSions for the correlation functions in the steady state, and
until colliding with and annihilating another particle. Com- '°" the time scales for relaxation towards the steady state.

petition between nucleation and annihilation produces a staWe also introduce a different method of analysis that yields

tistically steady state with a well-defined mean density oft! exactexplicit expression for the steady-state density and

particles and distribution of distances between particles. Wéo.r .the tlme.(.jependence of th_e denS|ty_ st.artlng from arbitrary
shall contrast two types of nucleationnpaired in which initial conditions. Our analytical predictions are compared

particles are deposited at random locations at random timeW'th the results of direct numerical simulations. In the simu-

. . . . . . Fa'\tlons, large numbers of diffusing particles are simulta-
andpaired in which pairs of particles are deposited at ran- . . : D
; L . neously evolved in continuous space, with annihilation
dom locations. The dynamics is as follows:

whenever two paths cross and nucleatigaired or un-
(i) Particles are nucleated in pairs with initial separationpaired at random times and positions.

b; A striking difference between paired and unpaired nucle-
(i) Nucleation occurs at random times and positions withation is the scaling of the steady-state density of particles,
ratel’; po, With the nucleation ratepy<I'*? (paired vs pyx Q3
(ili) Once born, all particles diffuse independently with (unpaired. Here, we shall exhibit the crossover between
diffusivity D; and these two cases in terms of the following dimensionless
(iv)  Particles annihilate on collision. quantity:
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tional tot ! for t—o. However, arguments based on dimen-
sional analysis and scaling show that this is not true in one
dimensior?~® In 1983, Torney and McConnell studied this
case and published an exact solution for the mean density as
a function of time'® Starting from an initial random distri-
bution of particles, they found

p(t)=p(0)exp(8Dtp?(0))erfc(p(0)(8D)"?). 4

N &
’Zﬁi}gg\;%’\}? In particular, p— (87Dt) "2 for t—o. A rederivation of
- the result of Torney and McConnell was provided by
1oooL Fa ﬁiy \5} Spouge'! whose insight was that an annihilation process is
1000 1125 1250 equivalent to a coagulation process if coagulants made up of
z an even number of particles are considered as diffusing
FIG. 1. One part of a numerical solution with paired nucleation, governed ‘ghosts.” Derivations based on reflection principteand
by (i)—(iv). Time increases upwards and each dot indicates the space-timfie|d theory>1# methods have also been published.
position of a diffusing particlel’=1.25<10"%, b=2, D=0.1. In discrete models of diffusion-limited reaction, diffu-
sion is approximated by hopping between neighboring sites
_(2r 1/3b 1 on a lattice. Here, too, the density of particles without nucle-
o)~ @ ation is proportional ta~*? for t—.4~18 Moreover, with

For e —«, the dynamics described k)—(iv) is equivalent unpaired nucleation, the steady-state density is proportional

. o SRS to the third power of the nucleation rat&:?! This can be
to that described byi"); (iii)—(iv) with the replacement interpreted as evidence for a time-dependent rate corlstant

Q—2rI. (2 in (3), or as requiring3) to be replaced by an equation of the
1form

The paper is arranged as follows. In the remainder o
this section we summarize published results for reaction— p=Q—k.p°. (5)

diffusion systems. In Sec. Il we analyze the dynamics usin

X . . . . owever, no polynomial equation for the density can de-
a hierarchy of equations for particle density functions, called_ . . . )
o o T . scribe both the steady state with nucleation and the long-time
reduced distribution functions” by van KampénDeriva-

. : : decay of the density without nucleatiéh?2
tion of the reaction kernel leads to an exact relation between . . . .
An exact solution has been found in one dimension for a

the density of particles and the derivative of the correlation,. : : .
. : discrete coagulation model with one fixed source. The latter
function. We also explore the linear response to a perturba-

tion away from the steady state to establish the time scalelssoIUtlon Is related to the probability that a given spin in an

for relaxation. In Sec. Ill, by introducing a function that sat- sing chain with random initial conditions does not change

o . It : . its value before time.?® For discrete and continuous coagu-
isfies a closed linear partial differential equation, we presenlt

. : ation models, exact results are available not only for the
exact expressions for the steady-state density and for th . .
. . - o . 0 - ensity but also for the spectrum of relaxation rafethe
time evolution of the density with arbitrary initial conditions.

\ . L distribution of interparticle distancé8, and correlation
In particular, analytical results are presented describing th?unctions?“ They are obtained by considering the function

ra_lp|ql |n|_t|al _ann|h|lat|on that trgnsforms an |n|t|z_1lly random E(nAx,t), defined as the probability that an arbitrarily cho-
distribution into one characterized by an effective repulsion : : . .
} sen segment af consecutive sites contains no particles, sat-
between particles. L o )
isfying a closed kinetic equation. It has, however, not proven
A. Unpaired nucleation possible to extend this method to the case of annihilation on
contact, because the functid(nAx,t) does not satisfy a

Analysis of diffusion-limited reaction dates back to von ,seq equatioft

Smoluchowski. HisMathematische Theorie der raschen
Koagulatiorf considered reaction between diffusing particles
resulting in merger, with the reaction taken to occur imme-
diately whenever two particles are a distarReapart. He The “coefficient of recombination” of two particles ini-
introduced a diffusion equation for the density of particlestially close together was introduced in the study of subatomic
relative to the position of a test particle and noted that theparticles® The relative motion of two diffusing particles is
density is zero at all times at radi®&* For many years it equivalent to a problem of Brownian motion of one
was assumed that the final result of a complete calculatioparticle”®*’

following the procedure outlined by von Smoluchowski A discrete model that corresponds to paired nucleation is
would be an equation for the mean density of particiemf  the Ising model, with nucleation at neighboring sites. Its dy-

B. Paired nucleation

the forn? namics was studied analytically by Glauber in 1$83he
o O—Kop? 3) nucleation rate is proportional to the square of the steady-
p=Q~kep", state density for nucleation rates sufficiently small that ex-

whereQ is the rate(per unit length and timeof appearance cluded volume effects can be neglecté@omputer simula-
of new patrticles and; is constant. This would imply, for the tions of a discretized reaction—diffusion mod&k-B— 0,
casewithout nucleation(Q=0), that the density is propor- published in 1987 contrasted the scalings of the steady-
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state density according to whether nucleation occurred ap
random sites or in pairs at neighboring sites. In the Iatter(?—tfn(xl, o Xnit)
case, the scalin§j = p? was found.

A different approach to diffusion-limited reaction was
recently introduced in the context of kink dynamics in a =D VZfa(X1, . . Xn i) = 2 KOG X)) Fa(Xq, . o Xn3t)
stochastic partial differential equatidi?DE).>° There, the w

n

dynamics was termed “mesoscopic” because it was an ap- "L
proximate model that ignored the internal structure of kinks -2 X4 1 KX Xn+ 1) Fea(Xes oo Xn Xnggi)
and antikinks, treating them simply as particles that happen Lot
to be nucleated in pairs. The treatment was based on classi- +sources. (7

fying particles according to whether they are annihilated in a_ o o )
collision with their nucleation partnefrecombination or First on the right is the diffusion term, due to the motion of

with a different particle(nonrecombinant annihilationThe ~ €ach particle with diffusion coefficieri2. The second term
steady state-density, is related to the mean lifetime of a 'epresents the reaction between two of theparticles:

particle, 7, by k(x,x") is the probability per unit tir_ne Fhat a particlg At
and one ak’ react, and the summation is over all pairs that
po=2T"r. 6) can be selected from theparticles. The third term accounts

for the fact that each of the particles may react with an-

The mean lifetimer was estimated directly by averaging other that is not part of the set of particles, and B is the

over the possible histories of a pair of particles born together&."Ize of the s_ystgm. The Ias_t term is a source contrll_)utlon
This approximate analysis yielded the estimate whose form is given in detail below. Equatidn) is one in
— (3bI'/8D) Y2 an infinite hierarchy. Explicitly, the first two equations in the

hierarchy are:

d @ L
Il. HIERARCHY OF DISTRIBUTION FUNCTIONS gt 1 =D o4t = I_de kO, XD Ta00,x50)
Let f,(Xq,...X,;t)dx;...dx, be the probability that +q4(Xq), (8)
there is one particle inxg,x;+dx4), one in &,,X,+dx,),
., and one in X, ,X,+dx,) at timet, regardless of the
positions of the other particlésThe functionf(x;;t) is the
particle density ak; at timet. On deriving the differential L
equation for its time derivative, one finds that it involves _J dx/[k(xg,x")+k(xy,x")]
fo(X1,Xy;t).24%23L Similarly, the time derivative of -L
f2(Xq,X5;1) involves f3(X;,X5,X3;t). One is thus led to a
hierarchy of differential equations for the evolution of the
distribution functions. +f1(X1;0)q1(X0) + F1(X2;1)q1(Xq). 9
In this section we derive the source terms appropriate for , .
paired nucleation in the hierarchy of differential equations.A' Source terms for paired nucleation
We also derive the reaction terms corresponding to diffusion  The termg;(x,) in (8) and(9) is the probability density
with annihilation on collision, without needing to introduce a per unit time for the creation of a particle &t; the term
reaction radius. Three parameters remain in the theory fog,(x;,x,) is the probability density per unit time for the
paired nucleation: the nucleation rate of pdiistheir sepa- simultaneous creation of a particle gt and another ax,.
ration at nucleatio, and the diffusivity of a particl®. For ~ When creation of particles always occurs in pairs, these two
unpaired nucleation there are two parameters: the nucleati®gource functions are related
rate Q and the diffusivity of a particldd. The annihilation
process is immediate on collision and therefore does not re-
quire extra parameters. It manifests itself instead in boundary
conditions on the distribution functions. We shall truncate ) ) , »
the hierarchy of distribution functions using an ansatz for the/Vhen the particle creation rates are independent of position
three-point correlation function, introduced in the literature@nd time,dx(x) is constant
for unpaired nucleatiof?3! thus obtaining a closed pair of _
: : ; . . ai(x)=2T, (11
differential equations for the density and two-point correla-
tion function. Their solution yields analytical approximations and g,(x,x+Yy) is independent ok. The constani” is the
for the steady-state density and two-point correlation functate of creation of pairs per unit length.
tion. By examining perturbations away from the steady state, Here, because particles are indistinguisha@l€x, ,X,)
we derive the time scales for relaxation towards the steadglepends only on y=|x;—x,| and the functions

Jd
Efz(xlylet): DV2fy(X1,Xa;t) —K(X1,X2) F2(Xq,X251)

X f3(X1,X2,X" 1) +0a(X1,X2)

L
d1(X1)= f_dez 02(X1,X2)- (10

state. fr(X1,... X ,... X, t) are independent of the order of the
The evolution of the reduced distribution functions has aThe probability that two particles initially at; andx, react
number of contributions is the probability that they diffuse and collide. Since particle
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diffusion is isotropic and independent of positid{x,,X5) ) ) L

also depends only op=|x;—x,|. We therefore define p(t)=—2p (t)fo dy K(y)g(y,t)+2r, (20
a(y)=0da(x1,Xz) and K(y)=Kk(x,Xz). (12)

The functionq(y) describes the probability density of dis- , P

L
tances between particles nucleated simultaneously. We sh%‘g(y,t)zZD —2g(y,t)—K(y)g(y,t)—p(t)f dz(K(|z|)
. . . . ﬁy L
use the following forms for this function, corresponding to

unpaired nucleation and to paired nucleation with initial +K(|z—y|))F3(y,z;t)+4Tp (1)
separatiorb: . . .
. +p A(Haly)—2p A(1)g(y,t)p(t). (21)
I'/L  unpaired,;
A=\ Fs(y—b) paired. (13
We can now rewritd8) and (9) as follows: B. The reaction kernel

9 2 L To complete the description of the dynamics of the sys-
—fi(x;t)= D—zfl(x;t)—ZJ dy K(y)fao(x,x+y;t)+2T, tem, we consider the reaction terms for the case wpare
at X 0 . - . . L _ .
(14) ticles diffuse with diffusivity D and ann|h'|l<'.:1te. on CO||ISI.C.)I’I.
We shall see that a consequence of annihilation on collision
d ) is thatg(0)=0 for all t>0, whereg(y) is the correlation
o1 (XY ) =DV (X, x+y ) —K(y) fa(x,x+yit) function defined in(17). We derive an exact relation between
g’'(0) and the rate of collisions between particles.
Let s(y,At) be the probability that two particles, with
initial separationy, collide beforeAt. Then, the reaction
kernelK(y), defined in(12), is given by

L
- || dedah +kdlz=y1)

X fa(X,X+Yy,Xx+2;t)
+q(y) +20(f1(¢ ) + fo(x+y;t)). (15

If the initial conditions are homogeneous, then the func-
tions fq, f,,..., will be homogeneous at all times. In par-
ticular, f1(x;t) will be independent ok at everyt. Let

p()=F.1(X1),

1
K(y)= lim —s(y,At). 22
(y) A:To AtS(y ) (22

If both particles diffuse with diffusivityD, therf’:3?

Fo(Xa,... Xn:)=p "(Of (X, Xo—X,... Xp— X;1). (16 y
We shall in particular be interested in the dimensionless cor- s(y,At)zerfc( (8DADT? 2), (23)
relation function defined by

9(y,=Fa(y;0). A7 \where we assumke>(DAt)Y2 To calculate the frequency

The functiong(y,t) is the probability density at timé of  of collisions between particles, we consider a time interval
particles at a distancg from a reference particle, divided by t,t+ At. Given the density(t) and the correlation function
the overall density of particles. It is constructed numericallyg(y,t) defined in(17), we can imagine following the paths
as follows. Choose a sample Nfreference particles, located of all the particles from timé to timet+ At without remov-

at{x;,i=1,...N} at timet. For eachx;, construct ing those that collide. Then, the probability that a particle
chosen at random undergoes a collision between tized
Gi(y,t)={number of particles betweeq and x;+y} timet+At is P(t,At), where

for y>0. Then,G(y,t) is the average over the¢ particles of

the G;(y,t) and -
eGi(y,t) an P(t,At)=2p(t)fodys(y,At)g(y,t). (24)

J
9(y.0=(p(1) "} oG, (18)

g(y,t)=1 for all y=0. In all the situations considered here, in the system with annihilation on collision due to the pos-
the total length 2 of the system is sufficently large com- sibility that the same particle undergoes t@s more colli-

pared to the correlation length so that sions in the interval,t+ At. However, this latter probability
] is proportional to At)? as At—0, and so(24) is valid for
limgo(y)=1, (19 our system in the limint—0.

yﬁmc

Next, consider the dynamics of the system as a whole.
wheregg(y) denotes the steady-state correlation function. The mean number of distinct collisions between titngnd

In terms of p(t) and g(y,t), Egs.(14) and (15 now time t+At is given byLp(t)P(t,At). We can, therefore,
simplify to the pair of equations write
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L It is interesting to compar€1) with the form ofK(y) used,
jo dy s(y,At)g(y,t) for example, by Lindenbergt al3*
L K(y)=ké(y—a), (32)
= JO dy s(y,At)(g(01) +yg'(07,t) which introduced a reaction radiasand a rate coefficierk.
There, it was assumed that these constants are connected to
+1y29"(0" t)+- ) the diffusivity via the Smoluchowski relatiok=2D/a and
that in the limita— 0, k—< their product remains finite. In
= 1 (8DA)Y2(0;t)+ 2 (8DAt)g’' (07 ,1) the form used here, by contrast, we are able to explicitly take
v the limit of zero reaction radiug— 0.
Similarly to (29)
+ O(DAt)3’2>. (25) L
| @z ilzhFay.z0-4aDFyy.070), 33
The number of collisions between timeandt+ At is pro- -t
portional toAt if where
g(0;t)=0. (26) F3(y,07;0) = lim a~tF4(y,a;t), (34)
a—0"

Because the number of nucleation events betweenttiamel

time t+ At is proportional to 2 At, the condition(26) is  and
necessary if there is to be a steady-state balance between
nucleation and annihilation. More generally, it is necessary if f dz K(|z—y|)Fa(y,z;t)=4DF3(y,y *;t). (35

p(t) is to obey a differential equation. It is, of course, pos- -t

sible to construct initial conditions that do not satié®6): a A similar expression was derived for a discrete coagulation
random distribution of particles, for example. Then, the num-model without nucleation by Lin, Doering, and
ber of annihilation events will initially be proportional to ben-Avrahant? SinceF5(y,0;t)=F5(y,y:t), Egs.(20) and
t¥2 this period of rapid annihilation creates a “depletion (21) simplify to the pair of equations

zone” 120333%n g(y t), which thereafter satisfig@6). That

. — 2 ’ +
g(y,t)<1 for y—0 implies an effective repulsion: particles p()==4Dp"(1)g"(07. 1)+ 2T, (36
arelesslikely to be found close to a reference particle thana ¢ 92
large distance from it. Z9(y,t)=2D (9—yzg(y,t)— K(y)a(y,t)
Using (25) and(26) gives exact expressions for the evo-
lution of the density: —8Dp(t)F5(y,07;t)+4Tp (1)
p(t)=—4Dp?()g’(0*,t)+2I', paired; +p 2(H)ay)—2p H(Hg(y,Hp(t). (37
p(t)=—4Dp?(t)g’'(0",t)+Q, unpaired. (27 Annihilation on collision is described by the terms involving

the reaction kerneK(y).
In particular, we have the following relationship between the )

steady-state density and the derivative of the correlation
function. Letpy and go(y) denote the steady-state density c. Truncation of the hierarchy

and correlation function. Then . ) ]
We have obtained exact expressions for the evolution of

I'=2Dp3g)(0*) paired; the density. However, to obtain a closed set of equations, we
(28  truncate the hierarchy of distribution functions via an ap-

_ 2.1 + H
Q=4Dppgo(07)  unpaired. proximation. Various methods have been used to break hier-

The reaction kerneK (y) is a singular function archies resulting from reaction—diffusion system$3!wWe
) 1 shall restrict ourselves to the simplest. In the hierarchy that
JO dy K(y)g(y,t)= lim A_tJO dy s(y,Atg(y,t) begins with(36) and(37) we make the ansatz
He F3(y.0"0)=g(y,)g'(0",1). (38)
=2Dg’(0",1). (29 This choice, which would be exact if successive interparticle
We have assumed thé26) holds. The derivative o§(y) is spacings were independefitis not per sethe most compel-
one-sided ling, but it has been shown to produce excellent results
(when compared with simulationfor batch reactions and in
(0" 1= lim g(a,t) (30 the steady state with unpaired nucleatiér® In Sec. Il we
9 . or @ ' shall compare the steady-state density obtained with this clo-
h _ sure to the exact result.
because(y) is only defined fory>0. In other words With the approximation  (38) we find
S(y—a) —4Dp%(t)F4(y,0") =g(y,t)(p(t)—2I'), and so(36) and
K(y)=2D lim a (31) (37 reduce to the following closed set of equations, linear in
a—0" g(y.t):
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FIG. 2. Correlation function for unpaired nucleation. Numerical results areFIG. 3. Correlation function for paired nucleation. Numerical results are
compared with the formulé43) obtained by truncating the hierarcksolid shown as dots and the approximatio#6) as a solid line.b=0.05, I’
line). Q=1.0 andD=0.5. =64.0, andD=2.0.

p(t)=—4Dp?(t)g’ (0", t)+2T, (39 92
$ e 0=2D 5 go(y) — 2K(y)Go(y)
d 92 ay

Eg(y,t)=2D&—yzg(y,t)—ZK(y)g(y,t) I I
+4p—0[1—go(y)]+ p—éé(y—b)- (44)

r
(1—g(y,t)+ ay)

(40 The solution of(44) is derived in Appendix A. Whem is

+ Y L
PO = fficiently | h | ivalent(4®) with (42)
. ) ) sufficiently large the results are equivalen wit )
plus the condition(26). In the case of paired nucleation, Of interest here is the opposite situation=0, with e de-

qﬁy)zl“dé(y—b.).l_ln_ the case 9{ un%aireg nucleation in the fined in Eqg.(1). The separatiot in the latter case is much
(thermodynamiglimit, L>p(t) ", (40) reduces to smaller than the length scale defined by the inverse density,

9 92 and the steady-state density is given by
Z9(y.)=2D Wg(y,t)—ZK(y)g(y,t) o [Tb
20 Po= ( ﬁ) . (45
* m(l—g(y,t)), (4D The correlation function in the same limit is
with, as beforeQ=2I". Note that no further simplifications y _
can be obtained by assuming low density. In particular, alow gy _{ b O<y<b; (46)
density expansion cannot be used to justify the truncation 0 1 y=b

(398).
Corrections to(46) are proportional tee® In Fig. 3 this
correlation function is compared with numerical results.

D. Steady states

The density and correlation function in the steady state
po andgy(y), are found by setting to zero the time deriva-
tives on the left-hand side @89) and of(40) or (41). There In order to study the relaxation to the steady state, we
thus results a second-order equationdgty), with the two  decompose the functiong(t) andg(y,t) as follows:
relations(26) and (28).

E. Relaxation to the steady state

For unpaired nucleatiorone finds! PO =pot Ip(t), “7)
Q |18 9(y,t)=go(y) + 59(y,t), (48)
tu__
Pou—(lm) ' (42) with pg and go(y) the steady-state density and the steady-

state correlation function, respectively. This decomposition
g})“(y)zl—e‘z(Q’zD)%, (43) s valid for both unpaired and paired nucleation. Assuming
that we are close to the steady state, we can obtain linearized
equations for the deviationdp and g from their steady-
state values. For paired nucleation

where we have introduced the superscript “t” to indicate
that the result is obtained from the truncati@®8) and “u”
to denote “unpaired nucleation.” In Fig. 2 we compare nu-
merical results for the correlation function wit43). d B 2t .

For paired nucleationthe steady-state equation for the 5t op()==4Dp389"(07,1) = 8D peGo(0™) 5p(t),
correlation function is (49
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2

J J . T . T
3199(y:0=2D 577 69(y,0) = 2K(y) 8(y.1) 1
numerical .
09 exact steady state 1
Ar 1—-9o(y)
——| sg(y.)+ —=5p(t) vel ]
Po Po ri(z)
2r 07k g
——33(y—b)dp(t). (50)
Po 06k i
For unpaired nucleation the last term(B0) is absent.
Formal solution of these coupled linear equations is pre- 0.5 ) . p—
sented in Appendix B. Explicit solution foall timesis in 0 1 2 3 4 5

fact possible for the unpaired nucleation césed presented
in the Appendn}. .Ultlmately. we are ImereSt.ed in_their FIG. 4. The functiorrg(x): numerical and exact results for unpaired nucle-
asymptotic relaxation behavior. If the relaxation processegsion. The solid line is Eq(62). Q=1.0, andD=0.5.

each involve a single exponential decay

t—o

—at
Sp(t) — Ae %, (51 changes due to diffusion of particles in or out of of the re-

o gion (0x), and due to nucleation of a single particle in the
59'(07,t) — Be A, (52)  region.
In Appendix C we derive equations for the space and

then the density and correlation function decay on the samg,o derivatives of (x,t). At any timet the densityp(t) is
time scale, i.e.= «. For unpaired nucleation we find from given by

the exact resul{B22) that the asymptotic decay is indeed
exponential, with

J
p(t)=———1(X,1)|x=0+- (56)
Y= (54 5)(DT?)Y3=7.236 .. (DT2)Y/2 X
5 &) To describe the time evolution ofx,t), we distinguish be-
_ 2\1/3_ 201/3 tween the cases of unpaired and paired nucleation using the
ga— (DQ )7=458. . (DQY™ 3 superscripts u and p.

. S _
In the case of paired nucleation, if we assume exponen- In the case olinpaired nucleationr®(x,t) satisfies

tial decay we find for the inverse time scale a 2D 92 " " 1_pu
32DT\ 12 Er (x,t)= &_er (X, 1) =xQri(x,t) + xQ(1—r%x,t))
aP= T) . (54) )

1%
=2D —r'(x,t)+ 1-2r4x,t)), 5
However, on the basis of the exact results reported below axzr 68 +xQ 1) 7

(and also in parallel wor®) there is reason to suspect that with the boundary conditions

the decay may not be purely exponential in the paired nucle-

ation case. rf(ot)=1 and limrYx,t)=3, t>0. (59
X— 00

IIl. EXACT RESULTS In the case opaired nucleationrP(x,t) satisfies

2

- - - . _ a
In this section we derive exact expressions for the den 2D&—erp(x,t)+2xr‘(1—2rp(x,t)) x=<b:

sity of particles, using a function that obeys a linear partial g

differential equation. The function is similar in interpretation Efp(x,t)Z 52

to the pair—pair correlation function in the Ising mod&l. 2D ——rP(x,t) +2bI'(1—2rP(x,t)) x>b,
The methodology is also similar to that used to obtain exact X

results for models of diffusion-limited coagulatiéhHere, (59)
we obtain explicit exact expressions for the density of parWith the boundary conditions

ticles, in steady state and nonsteady state, for paired and PPO0f)=1 and limrP(x,)=2%, t>0. (60

unpaired nucleation. Previous exact results for diffusion-
limited reaction with annihilation have been limited to the
case of no nucleatiof. A. Steady state: Unpaired nucleation

Let the functionr (x,t) be defined as follows:

X— 00

The steady-state solution @b7) will be denoted by
r(x,t)={probability that the number of particles ro(x). It satisfies
2

between 0 andx at time t is even. 55 d
0 (59 ZDWrg(x)erQ(l—ng(x)):O. (61

Note that, by translational invariance, we can replace the
interval (0x) by (X,X+x) for any X. The value ofr(x,t)  The solution i&%3®
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1 Ai((Q/D)¥3) ) . . . . -
u [ j— —
ro(x)= 2(1+ A(O) (62
0.9 - numerical . B
and is shown in Fig. 4. Thus, the exact steady-state density exact steady state
for unpaired nucleation is 08| .
r5(x)
sz_&rg(xﬂx:m 0Ty i
0.6 - o
1 Q 1/3|Ai/(0)| Q 1/3
E(B AI(O) B 16D 09186 ’ (63) 0.5 b 1 1 1 1 |
0 2 4 6 8 10
Note that the exact result for the steady-state density is T

0.9186 of the density42) predicted from the truncated hier- I o o

hv. For comparison. in a discrete model with nucleatio FIG. 5. The functiorr{j(x), measured at late times in a numerical simula-
archy. p o g . Nion with paired nucleatiorfdots. The solid line isr§(x) as given in Eq.
rate R, where collision of particles produces coagulationes). b=0.2, '=0.25, andD=0.5.
rather than annihilation, the steady-state density is given

by20,22
1/ R 1/3|Ai/(0)| D 1/2T 1/3|Ai/(0)|
u_—| lati P05\ Ao (68)
Po=5|5p AI(0) (coagulation. (64) 2\ D Ai(0)
and we regain the resul63).
B. Steady state: Paired nucleation
The steady-state solution ¢59) is C. Time-dependent statistics: Unpaired nucleation
rB(x) Let us introduce
or 1/3 oT 1/3 h”(X,t)=r“(x,t)—r3(X). (69)
ClA'((F) X | +C,BI (3) X|+1) x<b; Then,hY(x,t) satisfies
RE (2I‘b ” +1 >b 07h“ 2D ” ht 2Qx h' 70
5| Caex 5| * X St =2D =5 h%(x,t) =2Qx h(x,1), (70)
(65  with the boundary conditions
and is shown in Fig. 5. We have used the second of the h'%0t)=0 and limh'(x,t)=0, (7D
boundary conditiong60) to rule out increasing exponential X

solutions forx>b. The constants,, c,, andcs are fixed by
requiring r§(0)=0 and imposing continuity of§(x) and
(d/ax)rf(x) atx=bh.

The densityp(t) is given by(56). In the steady state

for all t. We can expand the general solution as follows:
hi(x,t)= >, ¢ h¥(x)e Mt (72)
i=1

where the eigenfunctioris/(x) satisfy

G Q
30 = Sx 0 =—\ih{(x), 73

with the boundary conditions

p:__rp X
Po dx O( )X:0+

1/2r\»
:§<3> (c1Ai’(0)+c,Bi’(0))

_(L)1/3|A|,(0)|

14D Ai(0) . ; ; 1
1 -
Bi,(8)+\’3Ai,(8)+8(Bi(8)+\3Ai(8))) 66
Bi'(¢)— y3Ai' () +£(Bi(e)— y3Ai(e)) )’ (66 . 08T 7
PolE
in terms of the dimensionless quantitydefined in Eq.(1). po(00) 06 & 7
The function(66) is plotted in Fig. 6.
In the limit e—0, Bi(e)—/3Ai(¢) and Bi(e) o4 ]
——J3Ai'(g), so 0.2 7
r 1/3 1 1/2
98=(ﬁ) (81/2— Selte =(5) (1+0(e%%). % ) 2 3 4 5
(67) :
Fore—o FIG. 6. Exact steady-state density vs the dimensionless parameter
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h'(0)=0 and limh{(x)=0. (74) \1=—(8DQ?)¥a,. (78)
_ _ o _ An explicit analytical solution for the density as a func-
The eigenfunctiondi(x) are thus given by tion of time is obtained once the constanfsare determined
Q|13 N from the initial conditionr“(x,0)
h}‘(x)zNiAi((B X— ﬁ)) (75) .
_ , , , ¢i= f o B (r'(x,0) = (). (79
The eigenfunctions are normalized by choosing 0
B - ([{Q\vs A D 1/3Jm _ Thus,
-2_ 2[ | X AL I el 2
N, fo dx Ai ((D X 20 o . dz Ai<(z). hY(x.1)
(79 N D\¥* \ 1/ Ai(z)
The eigenvalues; are related to the zeros of the Airy func- o fo dzAi(z+ay)|r| z a 0] —5| 1+ AL (0)
tion (all on the negative real axis => _ —
2\1/3 =1 J.dzAi“(z)
\i=—(8DQ*) (77 O il
wherea; is theith zero counting away from 0. Relaxation X Al 5) (x— 2—')>e‘hi‘, (80
towards the steady state is determined for late times by the Q
smallest eigenvalue and
u & u
p()=po= 5 h*(X,D]x=0+ (81
fwd Ai(z+ o 42 1/30 ! 1+ Alz)
170182 o zAi(z+a)|r" z 6 3 INO)
=pg—=|=| > —— Ai’(a))e M, (82)
2\D] & faidzAlz(z) !
|
1. Zero initial density J
p(1)=p5= 2 h'(6 D) =0 (84
If p(0)=0, thenr'(x,0)=1 for all x>0 and
) 1 1/3
_1N D 1/3Jocd (gt L Ai(z) 83 =p3—§(§)
Ci_E i 6 0 Za I(Z ai) _A|(O) . ( )
de Al 1 Ai(z)
ThUS, i 0 z I(Z_ai) —A|(O) it
X = - Ai'(a;)e M.
=1 J3dzAi%(2) (@)
(85)
‘ , : In Fig. 7, the exact time evolution is compared with numeri-
09 cal results, obtained with=3x 1. The lower dotted line
081 is obtained by plotting only the first term of the sum(85),
o7 — using the values from Table I. Explicitly, the first eigenvalue
(t) 06 exact steady state 1
p 0.5 exact evolution —
04+ first eigenfunction -
03 L i TABLE I. Quantities related to the eigenvalues and eigenfunctions for un-
paired nucleation.
0.2 - i
01r ] r _ Ai(z))
ol L r dzAi(z—a)| 1— =7
0 0.05 01 015 i a,  A'(a) [idzA%z) Jo Ai(0)
¢ 1 -2338 0701 0.492 0.972
FIG. 7. Time evolution starting with no particles present. Unpaired nucle- 2 —4.088 —0.803 0.645 1.002
ation withQ=16, D=1. Solid circles are numerical results. The solid line, 3 —5.520 0.865 0.749 0.996
almost invisible under the numerical results, is the exact evolution calcu- 4 —6.786 —0.911 0.829 1.001
lated from Eq.(85). The upper dotted line is the exact steady state and the 5 —7.944 0.947 0.897 1.012

lower dotted line is the first term in the suf@5).
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hP(0t)=0 and hP(x,t) bounded ax— ¢, (92

0.92 ' r I
for t>0.
09 | Let us introduce
numerical
(t) 0.88 exact steady state 7 )\i
p 0.86 exact evolution — | a;= AbT (92)
first eigenfunction
0.84 . For a;>1, the eigenvalue equation
0.82 . LhP(x)=—\;hP(x), (93
08! - ' ' : has a continuous spectrum of solutions
0 0.05 0.1 0.15
t . X . X
) i i o ) ) Ci(aj)| V3 Ai|l | ——a;| | —Bi| g| = —¢;
FIG. 8. Time evolution starting from a random distribution of particles with b b
the exact steady-state density. Unpaired nucleation@itil6, D= 1. Solid <b:
circles are numerical results. The solid line is the exact evolution, the upper X=<Db;
dotted line is the exact steady state, and the lower dotted line is the most 2I'b)\ 12
slowly decaying term in the suit82) with initial conditions(87). hip(x) ={ cy(aj)sin (a;— 1)1/2( T) (x—b)
2Tb 1/2
. . . +c3(a;)cos (a;— 1) —| (x—b
that determines the long-time approach to the steady state is s(ai) {( b D ( )
A =4.6%...(DQ)Y3=7.427 .. (DI'?)* (86) x>b.
(94)
2. Random initial density Whene is sufficiently large, there are also discrete eigenval-

An interesting case is provided by starting the systent€S at values of; <1 satisfying

with the exact steady-state densit§0) = pg, but with a ran- Ai(—ea;)Bi'(e(1—a;))—Bi(—ea;)Ai’ (e(1— ;)

dom initial distribution of particles. There is an initial period Yo n )

of rapid annihilation that reduces the density, followed by a T (&(1—a;))"(Ai(—ea;)Bi(e(1—-aj))

slower relaxation pa}gk to_ thg stgady—state_ value: . —Bi(—ea;)Ai(s(1—a;)))=0. (95)
For a random initial distribution of particles with density

p, the number of particles in (¥) is a Poisson random vari- The eigenfunctions in this case are

able with mearpx. The functionr(x,0) can be calculated as

) [ (X% | (x
follows: Ci(a;)| v3 Ail € b —Bi| ¢ b«
r'(x,0)="P[0 particles between 0 ans] he(x) = x<b:
+P[2 particles between 0 ang]+--- oIb) 12
) c4(ai)ex;{—(—) (1—ai)1’2x} x>b.
(pX) 1 D
=g P4 g PX 3 +...=§(1+e*2’)x). (87 (96)

d Thus, for all finiteg, there is a continuous spectrum of
eigenvalues with\;=4bI". For ¢ smaller thane. these are
the only eigenvalues. The critical valég satisfies

Figure 8 shows data from a numerical simulation, performe
with L=2x10°, along with the results of the calculation of
the coefficients in82), using(87).

D. Time-dependent statistics: Paired nucleation Ai(—e)Bi'(0)—Bi(—ec)AI"(0)=0, (97
Let us introduce SO
hP(x,t)=rP(x,t) = rB(x). (89) e.=1.98.... (98)
Then,hP(x,t) satisfies Discrete eigenvalues appear for larger valueg ¢Fig. 9).
P The unpaired limit is regained as—«, when—esa;—a;,
ZhP(x,t) = £ hP(x,t), (89) SO that\;—2.338(3DI'?)™".
Jt In Figs. 10 and 11 we compare the exact expressions for

the steady-state density and exponents characterizing relax-
ation toward the steady-state density with numerical results.
In each case the curved dotted line is obtained using the
lowest exponent available, but the coefficient is obtained

where the operatof is defined by

d2
2Dd—Xzf(x)—4fo(x) X<b;

LE(x)= & (90 from a best fit. In the case depicted in Fig. 10, there is a
2D Wf(x)—4bl“f(x) x>b. discrete eigenvalug;<4bI'; in the case depicted in Fig. 11,
there is only the continuum of eigenvalues=4bI", and the
The boundary conditions onP(x,t) are relaxation process may not be purely exponential.
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4T

360

20T |

100 |-

FIG. 9. Eigenvalues for paired nucleation. All values 4bI" are permitted.
Discrete valuea,;<4bI" are also found for sufficiently large The dotted
line isN=—a;4bl'/e.

E. Time-dependent statistics: No nucleation

In the absence of nucleation(x,t) satisfies the heat

equation
J 7>
il (x,t)=2Dmr (X,1), (99
with the boundary conditions
r0t)=1 and limr"(x,t)= 3, (100
X

for all t>0. The solution 0f99) is given by’

I’"(X,t)=l+(87TDt)_l/2(f dy(1—r”(y,0))e—(><—v)2/8Dt
0

0
+f dy (r"(—y,0)—1)e~ (x-»?e0t| (102

If the initial distribution of particles is random with den-

sity p(0), then

r(x,0)= 3(1—e 2,0, (102

Diffusion-limited reaction in 1d 83

1.6 T T T T T T T T
4l L reasseissaensssasnsasasasasanst
‘ - o."..‘.
12 | -
1F K .
8 o —
0.6 - . - ’ 1
04l W _

02f . . :

OI .I | 1 1 1 1 1 1]

0 002 004 0.06 008 0.1 012 014 016

t

FIG. 10. Density of particles vs time for paired nucleation starting from zero
density. The parameters dre=16, D=0.5,b=1 (¢=4). The solid circles

are numerical simulation results and the upper dotted line is the exact steady
state. The lower dotted curve jg(1— 1.6 exp(-2.341I't)). Note that the
latter exponent is the lowest far=4 and is a discrete value below the
continuous spectrum.

approach® although in the approaches detailed here we do
not make this explicit distinction. It is noteworthy that the
reaction—diffusion approach yields a steady state that is
within 9% of the correct one and a relaxation rate that differs
from the exact result by only 2.3%.

Although the case of paired nucleation is more compli-
cated in terms of the time scales associated with its dynam-
ics, its steady-state distribution of particles is closer to a
classical equilibrium random distribution than the corre-
sponding distribution produced by unpaired nucleation. Note
that the truncated hierarchy approach in this case leads to the
exact steady-state density. The underlying reason is that the
dynamics produced by paired nucleation is close to time-
reversal invariant. For comparison, an ensemble of noninter-
acting diffusing particles has a two-point functig(y) iden-
tically equal to 138 We can imagine producing a space-time
diagram such as shown in Fig. 1 from a diagram associated
with noninteracting particles in two steps. First, when two
particles collide, move them to a different, randomly chosen

NOW, using(56), we derive the density of particles as a func- part of the System_ Second, Separate them by a distance

tion of time for random initial conditions

_ * _ y _2
__ 1/2) 2p(0)t_ Y —y?8Dt
p(t) (87Dt) (fo dye 8Dte
+ f ° dy @0 gyt
—w 8Dt

=2p(0)(8wDt)" l/Zfocdy e 20(0)ygy?/eDt
0

=p(0)exp(8Dtp?(0))erfa p(0)(8Dt)Y?). (103

We thus reproduce the res) of Torney and McConneft?

IV. DISCUSSION

l T T T T
N R eiebeeeey
essvavas
eseowe
YT LS

Rl

12} -
1| o .'. i
pthost = -
06 . —
04 -

02 _

In the case of unpaired nucleation, there is only onerIG. 11. Density of particles vs time for paired nucleation starting from zero

length scale, proportional toD{Q)Y3, and only one time
scale, proportional to IQ?) 3. The relaxation time to

density. The parameters ate=16, D=0.5, b=0.25 (¢=1). The solid
circles are numerical simulation results; the upper dotted line is the exact
steady state. The lower dotted curvepi1—0.5 exp(-4bI't)). The expo-

equilibrium and the mean lifetime of a particle are propor-pent chosen for the fit is the lowest in the continuum. No discrete eigenval-
tional to one another. This is made clear in the mesoscopiges are found foe=1.
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TABLE Il. Summary of results for steady-state densities and relaxation rates obtained by various methods.

Unpaired nucleation Paired nucleation
b—oo b—0
Po Relaxation rate Po Relaxation rate
Mesoscopic «(Q/D)¥? «(DQ?) o (bI'/D)Y2 «(b/TD)Y2bI"
Hierarchy Q/16D)Y? 0.219/0 Q%" (bT'/2D)? (b/32DT)*2
Exact 0.9186Q/16D)Y® 0.2138/0Q%)3 (bT'/2D)? 4bT
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cated. The different approaches indicate the occurrence et inversion of Eq(B17)
multiple length and time scales. The mesoscopic appr8ach '
leads to a characteristic time for approach to equiIibriumAF,PENDIX A: STEADY STATE SOLUTION
proportional to bI') %, and a distinct mean lifetime of a OF TRUNCAfED HIERARCHY
particle proportional to lf/DT')2. These two time scales
were identified as corresponding, respectively, to recombina- In this Appendix we find the steady-state solutions of
tion (two particles created a distande apart collide and (40 and(41).
annihilate and to nonrecombinant annihilatigeollision be- 1 Unpaired nucleation
tween two particles nucleated at different timeldnpaired ) . .
annihilation is less frequent than paired annihilation, but botn e solve(41) with the left-hand side set to zero. Fourier

time scales are important in the dynamics of the sysfem. transforming the quasilinear equation according to

The exact approach leads to the former time scale as an 2 L 2mny
upper bound of a continuum of scales. The truncated ©n=|_—1/zf dy go(y)co o (A1)
reaction—diffusion hierarchy leads to the latter time scale 0
under the assumption of exponential decay, which may ndeads forn#0 to
be valid. Understanding the time scales in the case of paired or
nucleation requires further research. - —5
The theoretical approach based on truncation of a hier- . _ L™po (A2)
archy of distribution functions thus permits the calculation of Gn 8Dw?n? 4T’
steady-state densities and correlation functions that are in fair Lz + o

agreement with simulations. It gives the exact result for the L . 12
steady-state density in the limit—0, where the statistical Where Ed.(28) has been used. Normalization sggs=L"*
distribution of particles is close to random. As pointed out by OUrer inversion according to

van Kamperf, an approach using a truncation can be made *
systematic if it is based on an expansion in a small param- g(y)= [ E dnco
eter. However, his suggestion that the small parameter be the =
density of particles is not applicable to the case of unpaire¢an be done by separating out e O contribution explic-
nucleation of point particles because there is no other quarily and changing the resulting sum to an integpzdlid as
tity with the dimension of length, i.e., nothing for the density L — )

to be small compared to. The exact approach based on the

2mny
L 1

(A3)

function r(x,t) sidesteps these difficulties by providing a go(y)zl—%fwdqﬂ

direct method to calculate the density of particles. For any TPy JO 2 E

value of g, the density in the steady state and its time- Dpg

dependent statistics can be exactly calculated. However, the 1/ 2T |12

method has not yet been extended to exact calculation of the = 1__(_3> g Y(21Dpg) (A4)
full distribution of interparticle distances. 41 Dpy
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The requirement26) must also hold in the steady state. To- bI\ 2 1 )
gether with(A4), this leads to Eqg42) and (43). POZ(E) 1=go+ O(o )).

. . (A15)
2. Paired nucleation

— -1 — 2
We now solve Eq(44), where the steady-state density ~S=— 20 '+ 15+0(0), and P=30+0(c%).

po is related to the derivative a@y(y) asy—0 The correlation functiom, can be expanded as
I'=2Dgy(0")pp. (A5) V(102 | on omvet
=1+ 50|+ <y<b;
The &function contribution in the last term ¢#4) leads to a Jo(y) = b 27 () y=b (A16)

discontinuity in the derivativegy)(y) aty=b. This leads to 1 _—oylb >
; + 3 + =b.
the search for a solution of the form 1+z0e O(o%) y=b

2 These results as—0 are reported in Eq$45) and (46).
[14—(8— 1)e"@1Pp™y  o<y<b; q<45) (46)
Joly

L+ peCriD™ | g2 yop,
(A6) APPENDIX B: RELAXATION TO THE STEADY STATE

The constans is determined from the conditiofA5) Here, we detail the calculation of approach to the steady
112 state in the truncated hierarchy approach.
1-2S= . A7 i '
(SDPS) (A7) 1. Unpaired nucleation

Now, the constan® is determined by enforcing continuity of It is convenient to iniroduce the symbols

the solutiongy(y) aty=b x=(DT?¥  y=(DT)¥3 (B1)

P=5(1—e2(Dpo) %y _q (A8)  The linearized perturbation equatiof49) and (50) in the

. S o, . unpaired case are
The discontinuity in the derivativgy(y) aty=b is

Jd
, e r —=0p(t)=—x[8g'(07,t)+85p(1)], (B2)
go(b")—go(b7)=— . (A9) at
2Dpg 5
J J
Using (A6) to evaluate the left-hand side 6A9) and rear- —89(y,t)=2D —5 89(y,t) — 2K (y) 8g(y,t)
ranging gives an implicit expression for the steady-state den- t ay
sity —8x3g(y,t)—16y[1—-go(y)18p(1), (B3)
(L 1/2: ( (L vz p3,2) ST/ (AL0)  Where the specific forn42) has been implemented. As ini-
8D 8D 0 ' tial conditions, we choose
or, rearranging again 89(y,t=0)=0, (B4)
32_ 9 1 e22(bpg) 2 and an arbitrarydp(0). Note that having implemented the
(bpo) ™= 8 (1-e ), (A11) condition (19) on the steady-state solution implies that

0Gn-o(t)=0.

whereo is defined by The solution of Eq(B2) is

SbSF 1/4 .
_ — /5 304
0'—( D ) =v2g°". (AlZ) 5p(t):e—8xt5p(o)_/\/f dTe_BX(t_T)ﬁg/(0+,T).
0
While we cannot invertAl1l) explicitly for the steady- (B5)

state density, we can examine the limits in the dimensionlesxﬂansforming(B3) according to(Al) gives, forn#0
parametew. In the limit o> 1, corresponding to large initial

separation, we find d 2n?
' , 51 99n(D) == — 27— 88n(1) ~8x80n(1)
g
(bpo)*2— =, (A13) .
5 o , , —L—m59'(0+,t)+167@nﬁp(t)- (B6)
sopy—1'/8D, as obtained iri42) for the unpaired nucleation
case. MorevoverS—0 andg(y)—1—e * as in(43). We can formally solve this equation as well, to obtain
The limit c—0 corresponds to small initial separation. .
Then(A11) reduces to 5Qn(t)=f dr e~ 80772 +x)(t-1)
a? 1 0
bpo=—| 1= 70+ O(a?)|. (A14) 8D
x| = F/z5g'(0+,7)+167@n5p(7) . (B7)
Note thatoc— 0 corresponds tbpy,— 0. Expanding in pow-
ers of o, we find and hence its inverse Fourier transform
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t
Sg(y,t)y=— deTIC(y,t— 7)69'(0",7)

t
8 f dr Gly,t—7)8p(7). 89)
0

We have introduced the following functioriand taken the
limit L—o0):

+ o0

K(y, t)— e 8t E cogzwny — (8D@2n?/L2)t
n=—owo
= %Desxte (y2/2Dt), (B9)
< 2mn y _ 2.2/ 214
G(y.t) = —1 L — gyt 2 cos (80?2 ty

where the prime on the sums indicates omission of rihe

=0 term and we have used E@2).
Since the unknowns appear on both sidegRB) and

Habib et al.

op(s)= (B17)

X 1-J1+u+8u(l+u) '

It is possible to Laplace invert these expressions
exactly® In particular, Eq.(B17) can be rewritten as

dp(0) ( u

5P O A A A )
X \Juri-y, Vuri-y, Juri-y
(B18)
where
5+.5 5—5 1
and
1 1 1
yi==(\V5-1) y,=—>(5+1) ys=—>. (B20)
4 4 2
The inversion
1 1 2
Y ——— | =e A —+BeBerf —B\ﬁ)
(\/s+A—B Jmt o

(B21)

can then be applied to obtain

(B8), these are only formal solutions. To proceed, we

Laplace transform therfindicated by a tildgand solve the

resulting set self-consistently. The ling80) must be handled

carefully and not implemented prematurely. We find

op(s)= (p(0)—x&g'(0",s)), (B11)

1
8x(u+1)

5G(y,s)=—K(y,s)65'(0",5)+8C(y,s)5p(s). (B12)

From these two equations we can obtain an expression for

59'(0*,s) as follows. First, sety=0 in (B12). Since
g(0,t)=0 and sincegy(0)=0, it follows from Eq.(48) that
69(0,t)=0 for all t and thereforesg(0,s) =0 for all s. Thus,
we find

0=-K(0,)8G'(0",s)+8G(0,5)5p(Ss). (B13)

Substitution of(B11) into this result immediately leads to

8p(0)G(0,8)

X469’ (0",8)= — — :
(u+1)K(0,5)+G(0,s)

(B14)

where we have sat=s/8y. This, together with Eq4B11)

and (B12), constitutes a complete solution of the Laplace—t op(t)=
transform of the problem. The indicated transforms can b

calculated explicitly

~ 2(D/T)¥3

K(0,8)= ﬁ (B15)
- (DIT)13 1

G(08) =~ —n—| 1~ NS (B16)

and one readily obtains

op(t)=85p(0)e 81>, Ayye®ierfo( —y, \Bxt).
|
(B22)
It is noteworthy that this solution isxactwithin the trunca-
tion approximations for the model; that is, it represents the
full time-dependent solution for the model.

Asymptotic analysis of the exact result yields pure expo-

nential decay as indicated in E¢$1) and(52), with
a=(5+\5)x=72%...x (B23)

The proportionality of6g and ép clearly leads to the same
decay rate forsg(y,t) as fordp(t).

2. Paired nucleation
Here, it is convenient to introduce the symbols
ar

O=—
po’

6=Tbh. (B24)

The linearized perturbation equatiof49) and (50) in
the paired case are

~4Dp§og’ (07,1)—Qdp(1), (B25)

2
—6g(yt) 2D 5g(yt) 2K(y)dg(y,t)—Qég(y,t)

AT oT
——[1-g8(y)18p(t)— —5 8(y—b) p(t).
Po Po

(B26)

With the same initial condition as in the unpaired case,
the solution of Eq(B25) is formally given by
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—ot PY PRI e S = rin+ = ar -
op(t)=e""'6p(0)—4Dp; 0dre 69" (07, 7). 89(y,s)=—-K(y,s)6G9'(07,s)+ g(y,s)—sz—l,zH(y,s)
0
B2
(827 ,89'(07,9)
Transforming(B26) according to(Al) gives forn#0 x s+ op(0)=4Dpg s+Q (B33)
. m2n? 8D We are interested in obtainingg’(0",s). This can
21 90n(1) == =727 80n() = Q28Gn(1) ~ {1269’ (07,1) readily be done by evaluating the previous equatiory at
=0, to obtain[notice that we have choseig(y=0,)=0 for

Q 4r 2mnb all t]
+ = 8np(t)— 51504 —— | 5p(t). (B28)
Po pol L

0=-K(05)5g'(0",s)+

- ar
G(0ss)— pngH(O,S)

We can formally solve this equation as well, to obtain

t 8D 1 ,09'(0",s)
5©n(t)=fodre“SD”Z“Z’LZ]””“’){—L—lrzag’(otr) X570 (0 ~4Dpo—q—|. (B34)
QO ar 2mnb The previously introduced functions evaluated at the ori-
+|—08,— 31308 ——— | | Op(7) {, gin become
pogn ngllz 5( L ) p( )]
8D
and hence its inverse Fourier transforfmotice that IC(O,t)=—/-(2WDt)1ze_m, (B3H)
80n=0(t)=0 for all t)
+ oo
t t —Ot " — (8D@2n?IL2) tA
sg(y.t)=— f drK(y,t— )69’ (0", )+ f dr Gy, t—17) g0n=""Tme e o, (B36)
0 0
4r = 2mnb 2 20 2
X op(7) = sLl/zfdrH(yt—r)ap(r) (B29) H(Ot)—l_—lr2 m}) cos e (D7)t

(B37)

We are interested in obtaining the Laplace transform of these
functions. It is easy to obtain

We have introduced the following functions:

- 27Tny 22,2
IC(y t)— —-Ot 2 S AP (8D 7“n“/L%) t
o F(og =207 (B39)
1S = —1
= 8[? e Me (y2/2Dt) (B30) sl +1
t ;2 1
( ! ) L -0t 2Dqt
Q X H(Ot)= dqe cosgb, (B39
7rny B R
Gy, )= -0t 2 cos (8D w2n?/L2) tgn,
= so that
(B31)
4r 2 2
1 <, 2mny  2wnb — i H(0t) = 5——=e e PP, (B40)
H(yﬂ):me*m > cos 3 yCOS 3 poL pa\2mwDt
n=—ow
_ ar 2r 1 -
X e (8D71-2n2/L2)t_ (832) _71‘_[ 0s)= —— efb\s'(SJrQ)/ZD. B41)
P09 55 5 (

We Laplace transforniB27) and (B29) and solve the _ _ _
resulting set self-consistently, to obtain The Fourier components for the two-point correlation

function associated with EqA6) are

5o(s) = 1 0)—4Dp Zw
p(S)= g3 or(0)— rq . :i 2I'/(Dpo)
" LY22r  4n?n?
~ ~ _+—
85(y.s)=—K(y,s)55'(0",5)+G(y,S) 5p(s) Dpy L2
4ar 2mwnb
— 31 H(Y,S)6p(9), x| (28—1)—25&V2I(Pro) cos (B42)
PoL
from which in turn we find This form in turn leads to the Laplace transformdg.t)
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x

T+ Az

FIG. 12. The intervals (&) and (x,x+ AX).

- Q J/2r
g(0,s)= = D_pSZ(ZS_ 1)

f - :
X d
o “4(q?+2T/(Dpo)

)(s+Q+2Dg?)

2l e

3
Dpo

cosgb

o
.
Xzfo U0 25 2T/ (Dpy)) (54 0+ 2DP)
(843

It is now a straightforward matter td) collect the vari-
ous Laplace transform expressions to solve §gr(0",s)
using Eq.(B34); (2) substitute this result into EB11), and
explore the poles of the denominator of the resultéiids)
in the limit e—0. The procedure is tedious but leads to the
inverse time scal€54). The proportionality ofég and &p
clearly leads to the same decay ratedg(y,t) as forp(t).

Habib et al.

r—Ar =z z+ Az

FIG. 13. Particle movements contributing to the change (x,t). The
effect in each case depends on whether the number of particlesxn (O,
—AX) is odd or even.

Thus,

r(x+Ax,t)—r(x,t)

=Por(X,AX,1) = Pey(X,AX,t) + O(AX?). (C2)
In particular, by choosing=0,
F(AX,t)—r(0t)=0—"Pu(0,AX,t)+ O(AX?)
=—Axp(t)+ O(AX?). (C3)
Thus, the density(t) is given by
S C4

x=0"

We do note that it is not clear from this procedure that th%hich proves Eq(56)

relaxation process is actually exponential in time. Ifigt
exponential(and there is reason to question this from the
results of the exact and mesoscopic procedurden it is
necessary to perform the inverse Laplace transform mor
carefully. This is possible, but beyond the scope of this pa
per.

APPENDIX C: THE FUNCTION r(x,t) AND ITS
DERIVATIVES

We first calculate the derivative ofx,t) with respect to
x by considering the intervals shown in Fig. 12.
(i) Let Peo(X,AX,t) be the probability that there is an
even number of particles in (9, and no particle in

(X,x+AXx) at timet.

(i)  Let Poy(x,Ax,t) be the probability that there is an
even number of particles in (0, and one particle in
(X,x+AX) at timet.

(iii) Let Pyi(x,Ax,t) be the probability that there is an

odd number of particles in (¥) and one particle in
(X,x+AXx) at timet.

The functionr (x,t) defined in Eq(55) can be expressed
in terms of these quantities as follows:

F(X+AX,1)=Peg( X, AX, 1) + Por(X,AX,t) + O(AX?)
(Cy

F(X,1) = Peg( X,AX, 1) + Pey(X,AX, 1) + O(AX?).

Downloaded 26 Jun 2001 to 129.11.159.162. Redistribution subject to Al

Next, we consider the intervals §6; Ax), (x—AX,X),
and (x,X+Ax). Let PgX,AX,t) be the probability that
there is an even number of particles inX9,Ax), no par-
ficle in (x—Ax,x), and one particle inx;x+ Ax) at timet.
Let Peod X, AX,1), Perd X, AX,1), Perd(X,AX,1),
Pood X, AX,t), Poor(X,AX,t), Pord X, AX,t), and
Po11(X,Ax,t) be defined in the obvious way. The appropriate
intervals are shown in Fig. 13.

Becausay(0,t) =0 for all t>0, the probability that there
are two particles inX—Ax,x+AXx) is proportional toAx®
asAx—0. Thus,

r(x+Axt)+r(x—Ax,t)—2r(x,t)
=Pea1d X, AX, 1) = Pord X, AX, 1) — Peos( X, AX, 1)
+ Poor( X, AX, 1) + O(AX3). (C5)

We derive the contribution due to diffusion of particles
to the partial differential equatior(7) and(59) for the evo-
lution of r(x,t) by considering the probability that a particle
at x—Ax at timet diffuses out of the region (®) before
time t+ At, and the probability that a particle &t Ax at
time t diffuses out of the region (R) before timet + At.

The probability that a particle, at+ Ax at timet, is in
(0x) at timet+ At is given by’2

Q(AX,At)=(47D)"~ 1’2f dx exp( —x?/4DAt)
AXx

1 Ax
= Ef?ﬁC(z;ﬂﬁz{{;ﬂj). «:ED
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Let 0
Ra1d X, AXx,t) = mPelo(x,Ax,t),
P (C8)
5 Rool(x,Ax,t)=mpool(x,Ax,t),
Reoi X,AX,t) = — X,AX,t). C
ol ) anPeOl( ) (C7) and so on.
The time derivative of (x,t)
1
a—tr(x,t)= lim E(r(x,tJrAt)—r(x,t)), (C9
As Ax—0, this quantity is the probability density for finding At=0
a particle atx+ Ax at timet, given that the number of par- is found using Eq(C5), integrating overAx, and taking the
ticles in (0x) is even. Similarly, let limit At—0
r(x,t+At)—r(x,t)= Zfo dAX Q(AX,At)(Re1d X,AX,t) = Ry X, AX,1))
+2 fo dAX Q(AX,At)(— Reoi( %, AX, ) + Rogr( X, A%, 1))
f dAX Q(AX,At) —— aA (Pord X, AX,t) = Pard X, AX, 1) — Peot X, AX, 1) + Poor( X, AX, 1))
a [ 5 5
dAx Q(AX,At) —— TAX 2r(x t)Ax=+ O(AX®)
fwdA f ax ” t)Ax+O(Ax?) | =2D ” t)At+ O(At? C10
- o xer (4DAt)1 [?_er(x, ) X ( X ) - &_er(xi ) ( ) ( )
|
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